If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3000000 = 1.55x2 + -5.1x + 197 Reorder the terms: 3000000 = 197 + -5.1x + 1.55x2 Solving 3000000 = 197 + -5.1x + 1.55x2 Solving for variable 'x'. Combine like terms: 3000000 + -197 = 2999803 2999803 + 5.1x + -1.55x2 = 197 + -5.1x + 1.55x2 + -197 + 5.1x + -1.55x2 Reorder the terms: 2999803 + 5.1x + -1.55x2 = 197 + -197 + -5.1x + 5.1x + 1.55x2 + -1.55x2 Combine like terms: 197 + -197 = 0 2999803 + 5.1x + -1.55x2 = 0 + -5.1x + 5.1x + 1.55x2 + -1.55x2 2999803 + 5.1x + -1.55x2 = -5.1x + 5.1x + 1.55x2 + -1.55x2 Combine like terms: -5.1x + 5.1x = 0.0 2999803 + 5.1x + -1.55x2 = 0.0 + 1.55x2 + -1.55x2 2999803 + 5.1x + -1.55x2 = 1.55x2 + -1.55x2 Combine like terms: 1.55x2 + -1.55x2 = 0.00 2999803 + 5.1x + -1.55x2 = 0.00 Begin completing the square. Divide all terms by -1.55 the coefficient of the squared term: Divide each side by '-1.55'. -1935356.774 + -3.290322581x + x2 = 0 Move the constant term to the right: Add '1935356.774' to each side of the equation. -1935356.774 + -3.290322581x + 1935356.774 + x2 = 0 + 1935356.774 Reorder the terms: -1935356.774 + 1935356.774 + -3.290322581x + x2 = 0 + 1935356.774 Combine like terms: -1935356.774 + 1935356.774 = 0.000 0.000 + -3.290322581x + x2 = 0 + 1935356.774 -3.290322581x + x2 = 0 + 1935356.774 Combine like terms: 0 + 1935356.774 = 1935356.774 -3.290322581x + x2 = 1935356.774 The x term is -3.290322581x. Take half its coefficient (-1.645161291). Square it (2.706555673) and add it to both sides. Add '2.706555673' to each side of the equation. -3.290322581x + 2.706555673 + x2 = 1935356.774 + 2.706555673 Reorder the terms: 2.706555673 + -3.290322581x + x2 = 1935356.774 + 2.706555673 Combine like terms: 1935356.774 + 2.706555673 = 1935359.480555673 2.706555673 + -3.290322581x + x2 = 1935359.480555673 Factor a perfect square on the left side: (x + -1.645161291)(x + -1.645161291) = 1935359.480555673 Calculate the square root of the right side: 1391.171980941 Break this problem into two subproblems by setting (x + -1.645161291) equal to 1391.171980941 and -1391.171980941.Subproblem 1
x + -1.645161291 = 1391.171980941 Simplifying x + -1.645161291 = 1391.171980941 Reorder the terms: -1.645161291 + x = 1391.171980941 Solving -1.645161291 + x = 1391.171980941 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.645161291' to each side of the equation. -1.645161291 + 1.645161291 + x = 1391.171980941 + 1.645161291 Combine like terms: -1.645161291 + 1.645161291 = 0.000000000 0.000000000 + x = 1391.171980941 + 1.645161291 x = 1391.171980941 + 1.645161291 Combine like terms: 1391.171980941 + 1.645161291 = 1392.817142232 x = 1392.817142232 Simplifying x = 1392.817142232Subproblem 2
x + -1.645161291 = -1391.171980941 Simplifying x + -1.645161291 = -1391.171980941 Reorder the terms: -1.645161291 + x = -1391.171980941 Solving -1.645161291 + x = -1391.171980941 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.645161291' to each side of the equation. -1.645161291 + 1.645161291 + x = -1391.171980941 + 1.645161291 Combine like terms: -1.645161291 + 1.645161291 = 0.000000000 0.000000000 + x = -1391.171980941 + 1.645161291 x = -1391.171980941 + 1.645161291 Combine like terms: -1391.171980941 + 1.645161291 = -1389.52681965 x = -1389.52681965 Simplifying x = -1389.52681965Solution
The solution to the problem is based on the solutions from the subproblems. x = {1392.817142232, -1389.52681965}
| 4+8(x-6)=6-9(x-8) | | 5x-y^2-3=0 | | 3x+11y=33 | | (-7-3m^3-7m)-(-7m^3-3)=0 | | 3d*2+14d-5= | | 0.5(6x-20)+32=64 | | 5x^2+36x+2=0 | | 8x-44=-9x+78 | | 3x=18+4 | | 3x+4x=-3+x | | ln(3x-13)=16 | | v^2+3v-39=0 | | 3x+26=13-54 | | 3x(y^2+1)dx+y(x^2+2)dy=0 | | -8+15=5x-4x | | x^2+2ax-d^2=0 | | 4x+2=a | | 11=-4x-7x | | 5(-3)+8+3y=23 | | 0.5*x+1[(5x-4)(3x+2)]=0 | | 9(7+k)=84 | | 2y-6=4y+3 | | -3.6(1000)h+75=-51 | | 5(3)+8+3y=23 | | 8x-10=6x+38 | | -3.6(1000)h=-51 | | -3.6(100)h+75=-51 | | log4/log | | (2x-2)(4x+2)(0.5)=0 | | V=4i+3j | | 2m+85=685 | | 5(0)+8+3y=23 |